Bootstrap prediction intervals for Markov processes

نویسندگان

  • Li Pan
  • Dimitris N. Politis
چکیده

Given time series data X1, . . . , Xn, the problem of optimal prediction of Xn+1 has been well-studied. The same is not true, however, as regards the problem of constructing a prediction interval with prespecified coverage probability for Xn+1, i.e., turning the point predictor into an interval predictor. In the past, prediction intervals have mainly been constructed for time series that obey an autoregressive model that is linear, nonlinear or nonparametric. In the paper at hand, the scope is expanded by assuming only that {Xt} is a Markov process of order p ≥ 1 without insisting that any specific autoregressive equation is satisfied. Several different approaches and methods are considered, namely both Forward and Backward approaches to prediction intervals as combined with three resampling methods: the bootstrap based on estimated transition densities, the Local Bootstrap for Markov processes, and the novel Model-Free bootstrap. In simulations, prediction intervals obtained from different methods are compared in terms of their coverage level and length of interval.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiparametric Bootstrap Prediction Intervals in time Series

One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...

متن کامل

Model-Free Bootstrap for Markov processes

Consider time series data X1, . . . , Xn that arise as a (partial) sample path of a stationary Markov process of order p ≥ 1. Under this general context, there are (at least) two resampling mechanisms available in the literature, namely: (a) bootstrap based on kernel estimates of the transition density of the Markov processes of Rajarshi (1990), and the Local Bootstrap for Markov processes of P...

متن کامل

A Sieve Bootstrap approach to constructing Prediction Intervals for Long Memory Time series

This paper is concerned with the construction of bootstrap prediction intervals for autoregressive fractionally integrated movingaverage processes which is a special class of long memory time series. For linear short-range dependent time series, the bootstrap based prediction interval is a good nonparametric alternative to those constructed under parameter assumptions. In the long memory case, ...

متن کامل

Neural network sieve bootstrap prediction intervals for hydrological time series

When analyzing time series data, the estimation of forecast intervals, based on an observed sample path of the process, is a key issue. If the process is linear and the distribution of the error process is known, the methodology is well developed but, for departures from the true underlying distribution, the prediction intervals perform poorly. In this latter case several distribution free alte...

متن کامل

Confidence Intervals for the Pythagorean Formula in Baseball

In this paper, we will investigate the problem of obtaining confidence intervals for a baseball team’s Pythagorean expectation, i.e. their expected winning percentage and expected games won. We study this problem from two different perspectives. First, in the framework of regression models, we obtain confidence intervals for prediction, i.e. more formally, prediction intervals for a new observa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 100  شماره 

صفحات  -

تاریخ انتشار 2016